Thin and vibration-free: Aeration
0:40
The features of the microblower include thinness and vibration-free operation. In this demonstration, microblowers are used as an air pump in a small water tank.
Related Videos
In Micro Mechatronics
-
Play video Responsiveness: Floating a ball by blowing air from below
Responsiveness: Floating a ball by blowing air from below
In this demonstration, a microblower expels air from below to float a ball. The way that the ball floats upward as soon as the button is pressed confirms the high responsiveness of the microblower.
0:40
-
Play video High pressure: Water fountain
High pressure: Water fountain
The pressurized air in the tank flows out suddenly, pressing on the liquid and propelling a jet of water from the nozzle. In this video, the water jet will reach a height of around 3 meters.
0:53
-
Play video Pressurizing (expansion): Balloon
Pressurizing (expansion): Balloon
In this demonstration, multiple microblowers are used, arranged in parallel. The thinness and compactness of the microblowers allows them to be incorporated flexibly into various layouts.
0:59
-
Play video Pressurizing: Siphon
Pressurizing: Siphon
The microblower can generate high air pressure. In this demonstration, the air pressure in a tank is raised, causing water to be pumped upward.
1:04
-
Play video Negative pressure: Suctioning a viscous liquid
Negative pressure: Suctioning a viscous liquid
In this demonstration, a viscous liquid is suctioned. Note that the microblower is poweful enough to suction the viscous liquid.
0:45
-
Play video Responsiveness: Indirect liquid conveyance
Responsiveness: Indirect liquid conveyance
In this demonstration, pressurized air is used convey liquids indirectly. Two microblowers are used, one for expulsion and one for suction.
1:17